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Abstract— For �-ary �-sequences, we develop the concept of
similarity functions that can be used (for � � �) to model a ther-
modynamic similarity on DNA sequences. A similarity function is
identified by the length of a longest common subsequence between
two �-ary �-sequences. Codes based on similarity functions are
called DNA codes [10]. DNA codes are important components in
biomolecular computing and other biotechnical applications that
employ DNA hybridization assays. We present our unpublished
results [8] connected with the conventional deletion similarity
function [1] used in the theory of error-correcting codes. The
main aim of this paper – to obtain lower bounds on the rate of
optimal DNA codes for a biologically motivated [11], [12], [13]
similarity function called a similarity of blocks. We also present
constructions of suboptimal DNA codes based on the parity-check
code detecting one error in the Hamming metric [3].

I. INTRODUCTION AND BIOLOGICAL MOTIVATION

Single strands of DNA are, abstractly, ������� � �-
quaternary sequences, with the four letters denoting the re-
spective nucleic acids. Strands of DNA sequence are oriented;
for instance, � � ���� is distinct from � � ����.
Furthermore, DNA is ordinarily double stranded: each se-
quence �, or strand, occurs with its reverse complement
� ′, with reversal denoting that the sequences of the two
strands are oppositely oriented, relative to one other, and
with complementarity denoting that the allowed pairings of
letters, opposing one another on the two strands, are ���� �
or �����—the canonical Watson-Crick pairings. For instance,
two sequences � � ���� and � ′ � ���� are reverse
complement of one another. Obviously, for any strand �, we
have �� ′�′ � �.

Whenever two, not necesseraly complementary, oppositely
directed DNA strands ”mirror” one another, they are capable
of coalescing into a DNA duplex. The process of forming
DNA duplexes from single strands is referred to as DNA
hybridization. The greatest energy of DNA hybridization (the
greatest stability of DNA duplex) is obtained when the two se-
quences are reverse complement of one another and the DNA
duplex formed is a Watson-Crick (WC) duplex. However, there
are many instances when the formation of non-WC duplexes
are energetically favorable. The energy of DNA hybridization
(the stability of DNA duplex) E���� � of two single DNA
strands � and � is, to a first approximation, measured by
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gest length of a common subsequence (not necessary
ous) of either strand and the reverse complement of the
0]. For two reverse complementary strands � and � ′

th �, this measure plainly equals their length �, i.e.,
imum number of Watson-Crick bonds (complementary
airs) which may be formed between two oppositely

strands:

E���� ′� � ���
�

E���� ′� �

� ���
�

E�� ′��� � E�� ′��� � �� �����

tance, if � � ���� and � ′ � ���� , then
′� � �.

NA code � is a collection of single stranded DNA
es of fixed length � where each strand occurs with
rse complement and no strand in the code equals its
complement [8], [10], i.e., if � ∈ �, then � ′ ∈ �
′ �� �. In DNA hybridization assays, the general
that formation of WC duplexes is good, but and the
on of non-WC duplexes is bad. A primary goal of
ode design is to be assured that a fixed temperature can
d that is well above the melting point of all non-WC
s and well below the melting point of all WC duplexes

form from strands in the code. Thus the formation
WC duplex must be significantly more energetically
le than all possible non-WC duplexes. DNA codes are
nt components for biomolecular computing [5] and
otechnical applications that employ DNA hybridization
Note [10] that for these applications, the code length
� ≤ ��, is experimentally accessible and that codes

ore than ��� codewords could soon be called for.
mathematical analysis of DNA hybridization is based
concept of similarity functions that can be used to

a thermodynamic similarity on single stranded DNA
es. For two quaternary �-sequences � and � , the
length of a sequence occurring as a (not necessary

ous) subsequence of both is called a deletion similarity
� � between � and � . We supposed [8], [10] that the

similarity 	����� � identifies the number of base pair
in a hybridization assay between � and the reverse
ment of � , i.e., the energy of DNA hybridization
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E���� ′� satisfying (1.1) is defined as follows

E���� ′� � E�� ′� � � � ������ � � �������� �����

Let �, � ≤ � ≤ �−�, be a fixed integer. A DNA code� is
called a DNA code of distance � based on deletion similarity
or, briefly, an �����-code [8], [10] if the deletion similarity

������ � ≤ �−� − �� �� � ∈ �� � �� �� �����

Definition (1.2) and condition (1.3) mean that the energy of
DNA hybridization

E���� ′� ≤ �−� − �� �� � ∈ �� � �� �� �����

i.e., in �����-code any strand X and the reverse complement
of the other strand Y can never form ≥ � − � base pair
bonds in a hybridization assay. In the theory of error-correcting
codes, condition (1.3), by itself, specifies codes capable to
correct any combination of � deletions [1], [4].

Example 1.1. DNA code � � {��� ′� �� � ′}, where

� � ���	� � ′ � �	
	�

� � �	��� � ′ � 
	�	� �����

is a �����-code of length � � � and distance � � � because
� − � − � � � and sequence � � �	 of length � is the
longest common subsequence between any pair of strands in
DNA code �. Hence,

E����� � E�� ′�� ′� � ������ ′� � ��

E��� � � � E�� ′� � ′� � ����� � ′� � ��

E���� � � E�� ′� � ′� � ������ ′� � ��

E���� ′� � E�� ′� � � � ������ � � ��

In papers [11], [12], [13], we introduced the concept of
common block subsequence, namely: a common subsequence
� of sequences � and � is called a common block sub-
sequence if any two consecutive elements of � which are
consecutive in � are also consecutive in � and vice versa. For
two quaternary n-sequences � and � , the longest length of a
sequence occurring as a common block subsequence of both
is called a block similarity between � and � . For example,
sequence � � �	 of length � is the longest common block
subsequence between any pair of strands in DNA code (1.5).
Thus, DNA code (1.5) can be considered as DNA ��� ��-code
based on block similarity.

The first conventional issue of coding theory [3] for DNA
codes – to get a lower random coding bound on the rate
of DNA codes and, hence, to identify values of the distance
fraction ��� for which DNA code size grows exponentially
when � increases. The given problem is more difficult than
the corresponding problem for deletion-correcting codes. For
instance, we cannot apply the best known random coding
bounds [6] on the rate of deletion-correcting codes because
these bounds were proved for codes which are not invariant
under the reverse complement transformation. For the deletion
similarity, the best known random coding bounds on the rate
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II. NOTATIONS, DEFINITIONS AND RESULTS

ymbol � denotes definitional equalities and the symbol
�� �� � � � � �} denotes the set of integers from 1 to �. Let
� � � � be a fixed even integer, � � {
� �� � � � � 
− �} be
dard alphabet of size |�| � 
 and ��� ����� denote the
(smallest) integer ≤ � �≥ ��. Consider two arbitrary
-sequences

��� ��� � � � � ��� ∈ ��� � � ���� ��� � � � � ��� ∈ ���

t follows, we will denote by symbol � � ������ an
y symmetric function satisfying conditions

���� � ������ ≤ ������ � �� � ∈ ��� � ∈ ���

lled [10] a similarity function. Introduce the binary
function

� � −� ��
� �− ��− �� ��
���− ��� 
 � � � ��

��	 and � � �� �� � � � � �. By symbol

���� ��� � � � � ��� ∈ ��� where �� � ��� � ��� �

� �� � · · · � �� ≤ �� � ≤ �� � �� � · · · � �� ≤ ��

l denote a common subsequence of length |�| � �
� and �.

ition 1. [1]. Let �������, 
 ≤ ������� ≤ �, denote
gth |�| of longest common subsequence � between
es � and �. The number ������� is called a deletion
ty between � and �.
ition 2. [11], [12], [13]. A common subsequence

� � ���� ��� � � � � ���� � ≤ � ≤ ��

d a common block subsequence of length |�| � �
� and � if any two consecutive elements ��� ����,

� �� � � � � � − �, which are consecutive (separated) in �

consecutive (separated) in � and vice versa, i.e,

��� � ���� � ������ ↔ ��� � ��� � ���� � ������ �

ition 3. [11], [12], [13]. Let ������� denote the
|�| of longest sequence occurring as a common block
ence � between sequences � and �. The number
�, 
 ≤ ������� ≤ �, is called a similarity of blocks
� and �. Obviously, ������� ≤ �������.

ition 4. [8], [10]. If 
 � �� �� � � �, then

�� � �
 − ��− �� � ∈ � � {
� �� � � � � 
 − �}�



is called a complement of a letter �. For an arbitrary �-ary
�-sequence � � ���� ��� � � � � ��−�� ��� ∈ ��, we define its
reverse complement ��� � ����� ���−�� � � � � ���� ���� ∈ ��.

Let ���������� � � � �����, where

���� � ������� ������ � � � � ������� ����� ∈ �� � ∈ �� ��

be codewords of a �-ary code � � {���������� � � � �����}
of length � and even size � . Let �, � ≤ � ≤ � − �, be an
arbitrary integer.

Definition 5. [8], [10]. A code � is called a DNA
�����-code based on similarity function 	 � 	����� (briefly,
�����-code) if the following two conditions are fulfilled.
�
� For any number � ∈ �� � there exists �′ ∈ �� �, �′ �� �, such
that ���′� � ������. �

� For any �� �′ ∈ �� �, where � �� �′,
the similarity 	���������′�� ≤ �−� − �. We will also say
that code � is a DNA code of length �, distance � and
similarity �−� − �.

For � � 	, Definition 5 and a biological motivation of
�����-codes based on deletion similarity 	 � 	������ were
suggested in [10]. If only condition �

� is retained, then an
�����-code based on deletion similarity is a code of length
� capable to correct any combination of ≤ � deletions [1].
A biological motivation of quaternary DNA codes based on
similarity of blocks 	 � 	������ was suggested in [11].

For given � and �, we denote by ������� the maximal
size of �����-codes. If �, 
 � � � �, is a fixed number, then


���� � ��

�→∞

��������� �����
�

is called a rate of ��� �����-codes.
Let � � ��� , 
 � ��� � �� − ����, be the unique root of

equation ���
�

� � ������− �� � �����. A lower bound on the
rate 
�

� ��� of DNA codes based on the deletion similarity is
presented by

Theorem 1. [8]. If 
 � � � ��� � then


�
� ��� ≥ 
�

� ��� � � � �− ��� ������ − �� � �������

Example 2.1. For the binary case, ��� � 
����	
 and for
the most important quaternary case, ��� � 
���
��. In addition,
��� � 
��	�
� and ��� � 
�	
��	.

Theorem 2. For any distance fraction �, 
 � � ≤ �

�
, the

rate 
�
� ��� of DNA codes based on the similarity of blocks

satisfies inequality


�
� ��� ≥ 
�

� ��� � ��− ��−������ �����

����� � 
��
�≤�≤�

����� ��� �����

����� �� � ��− ����

(
�

�− �

)
� ����

(�
�

)
� �����

Theorems 1 and 2 are established with the help of a random
coding bound described in Sect. 3. The proof of Theorem 2
will be given in Sect. 4. The proof of Theorem 1 will be given
in Sect. 5.

Let a number ��� , 
 � ��� ≤ ���, be the unique root of
equation 
�

� ��� � 
 or �− � � �����. Obviously, the lower

bound 
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 � � � ��� and we will say that ��� is a

point of the lower bound 
�
� ���.

ple 2.2. We calculated ��� � 
������, ��� �
, ��� � 
�		��� and ��� � ���. It means that the
points for block similarity exceed the corresponding
points (see, Example 1) for deletion similarity.
can easily understand that the conventional Hamming
n the size of block codes with distance ��� is a trivial
ound on ��

� �����. For � � �, an improvement of
ial bound is given by
rem 3. The maximal size ��

� ��� �� ≤
(
��−� � �

)
��.

f. Consider an arbitrary code � � {����� � ∈ �� �} of
, distance � � � and block similarity �−�. For each

here exists one or two subsequences of length � − �
d by deletions of the first or the last element of ����.
contain �� ���� codewords which yield one (two)
ences of length �− �. Obviously, �� ≤ �. From item

Definition 5, it follows that there are ������ distinct
�–subsequences, i.e., �� � ��� ≤ ��−�. Therefore,
� ��� ≤

(
��−� � �

)
��.

rem 3 is proved.
following theorem is based on a construction of �-ary
des obtained with the help of �-ary parity-check codes
g one error in the Hamming metric [3].
rem 4. There exists a �-ary DNA code of length �,

e � � �, block similarity �−�− � � �− � and size

�
(
��−� � �

)
�� if � � � � ��;

� ��−��� if � � ��, � � ����, � ≥ �;

�
(
��−� − ������−�

�−�

)
�� if � is a number divisible

� and 	;
�

(
��−� − ��	� − ������−�

�−�

)
�� if � is a number

isible by �.

� � ��, then Theorem 3 means that the construction
orem 4 is optimal. If � is fixed and � → ∞, then

3 means that the construction of Theorem 4 is
otically optimal.

ple 2.3. If � � � and � � 	, then a DNA code
th � � 	, size � � 	, distance � � � and block
n) similarity �−� − � � � contains 2 pairs of code-
���� ���� and ���� ����. Obviously, ��

� �	� �� �
� � 	.

ple 2.4. For � � � � 	, the construction of optimal
ode from Theorem 4 is illustrated by the following
hich contains 	� � �	 codewords satisfying the parity-
ondition: for each codeword, the sum of its elements
mber divisible by 	. These codewords are written as
�� pairs of reverse complement codewords. Any row

able consists of 1, 2, or 4 pairs. In any row, the first
) codewords are obtained as consecutive cyclic shifts
rst (second) codeword of any fixed pair of the row. If
inate from the table all 15 pairs from the second and

columns of the table, then one can easily check that
17 pairs will constitute a quaternary DNA code � of



length � � �, size � � � · �� � ��, block distance � � �
and block similarity �−� − � � �.

���������
��������� ��������� ��������� ���������
��������� ��������� ��������� ���������
��������� ��������� ��������� ���������
��������� ��������� ��������� ���������
��������� ��������� ��������� ���������
��������� ��������� ��������� ���������
��������� ���������
��������� ��������� ��������� ���������
���������

We mark by the symbol underline pairs of codewords (there
are 10 such pairs) from code � which have pairwise deletion
similarities ≤ �. They constitute a quaternary DNA code of
length � � �, size � � � · �� � ��, deletion distance � � �
and deletion similarity � − � − � � �. This means that the
maximal size ��

� ��� �� ≥ ��. A general constructive lower
bound on ��

� ��� �� is given by
Theorem 5. If � � ��, where � � �� �� � � � is an odd

number, then

��
� ��� �� ≥

��−�

�
�

Theorem 5 is based on a construction [4] of codes correcting
single deletions or insertions.

III. RANDOM CODING BOUND FOR DNA CODES

For an arbitrary integer �, � ≤ � ≤ �, we define two sets

P��� �� � {����� 	 	����� � �}
and


P��� �� � {� 	 	��� �
�� � �}�
i.e., the set of all pairs ����� for which the similarity
	����� � � and the set of all sequences � for which the simi-
larity between � and its reverse complement �
� is 	��� �
�� � �.

For fixed parameter 
, � ≤ 
 ≤ �, define functions

��
� � �
�
�→∞

���� |P��� ���− 
����|
�

and


��
� � �
�
�→∞

���� | 
P��� ���− 
����|
�

satisfying inequalities � ≤ ��
� ≤ � and � ≤ 
��
� ≤ � . One
can obtain (the proof is omitted here) a random coding bound
on the rate ����� which is given by

Lemma 3.1. Let �, � 
 � 
 �, be fixed. If

�
�
�≤�≤�

{�− 
��
�} � ��

then the rate

����� ≥ �
�
�≤�≤�

{�− ��
�}�
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IV. PROOF OF THEOREM 2

t �, � ≤ � ≤ �, be an arbitrary integer and
�� 
P���� �� denote the sets from Lemma 3.1 for
ilarity of blocks. For a fixed �-ary �-sequence � �
� � � � ���, and � � �� �� � � � ��
�{�� � − � � �}, we
ce the concept of �-block presentation of �, i.e., a
n of � into � nonempty blocks

� � {������ � � � ���−����}� �����

each block contains consecutive elements of �. Let
�� ��� � � � � ��� ∈ ��, be a fixed �-ary �-sequence. We
t a block presentation � of the form (4.1) is a block
ence (BSS) of � if � is a subsequence of �, i.e.,

� �
(
��� � ��� � � � � � ���−�

� ���
)
�

� ≤ �� 
 �� 
 · · · 
 ��−� 
 �� ≤ ��

blocks {������ � � � ���−����} consisting of consecu-
ments of the sequence � are separated in �. Obviously,
r ����� ∈ P���� �� (a sequence � ∈ 
P���� ���, then
xists a block presentation � which is a common BSS
� and � (� and �
�), i.e., each of sequences � and �
�
�) contains separated blocks {������ � � � ���−����}

ng of their consecutive elements. The following upper
n the size |P���� ��| is true.

ma 4.1. For any �, � ≤ � ≤ �, the size

|P���� ��| ≤ �� ·
��{�	 �−���}∑

���

(
�− �

� − �

)
·
[
��−� ·

(
�− �� �

�

)]�
�

proof of Lemma 4.1 is omitted here. For a fixed �-ary
nce � � ���� ��� � � � � ��� and its �-block presentation
e introduce a reverse complement �-block presentation

� �
�
��−�� � � � � �
��� �
��}� � � �� � � � ��
�{�� �− �� �}�

ma 4.2. The set 
P���� �� is empty if � ≥ � is odd.
is even and an �-sequence � ∈ 
P���� ��, then there
integer �, � � �� �� � � � ��
�{�� �− ���} and a self-

complementary �-sequence � � �
�, |�| � �, of the form
hich is a common block subsequence between � and �
�
as a self-reverse complementary block presentation

������ � � � ���−����} � {�
�� � �
��−�� � � � � �
��� �
��} � �
��

ck �� � �
�� , block �� � �
��−�, � � �, block ��−� � �
��,
ck �� �

�
��.
proof of Lemma 4.2 is omitted. Lemma 4.2 leads to
ma 4.3. For any even �, � ∈ ���, the size

| 
P���� ��| ≤ ��
� ·
��{�	 �−���}∑

���

(
���− �

����� − �

)
·

[
��−�

(
�− �� �

�

)]
�



For � ∈ ���, consider numbers

���� �� � ���
�≤�≤���{�� �−���}

{(
�− �

� − �

)
·

(
�− �� �

�

)�
}
�

Let �, 	 � � � �, be fixed parameter. Introduce

����� � 
��
�→∞


�
� � ��� ���− �����
�

� 	 � � � ��

Lemmas 4.1 and 4.3 yield upper bounds on functions �
����

and ������ used in Lemma 3.1:

�
���� ≤ �� � �� �������

������ ≤ �

�
��� � �� ������� �

Therefore, Lemma 3.1 gives a random coding bound on
the rate 	�

� �
� of �-ary DNA ��� �
���-codes based on the
similarity of blocks. One can easily check that the given lower
bound 	�

� �
� can be written in the form (2.1)-(2.3).
Theorem 2 is proved.

V. PROOF OF THEOREM 1

Let �, 	 ≤ � ≤ �, be an arbitrary integer and

P���� �� � {����� � ������� � �}�
�P���� �� � {� � ����� ���� � �}�

denote the sets from Lemma 3.1 for the deletion similarity.

Lemma 5.1. [2], [7]. Let � and � be integers, 	 ≤ � ≤ �.
For an arbitrary �-ary �-sequence � denote by ����� �� the
set of all �-ary �-sequences � that include � as a subsequence,
i.e., that can be obtained from � by �− � insertions. Then for
the fixed � and �, the size of ����� �� does not depend on �
and has the form

|����� ��| �
�−�∑
���

(
�




)
�� − ��� � ����� ��� �����

Lemma 5.2 The set �P���� �� is empty if � is odd. If �
is even and an �-sequence � ∈ �P���� ��, then there exists a
self-reverse complementary �-sequence � � ���, |�| � �, which
is a common subsequence between � and ���.

Lemma 5.2 is similar to Lemma 4.2. Lemmas 5.1 and 5.2
yield

|P���� ��| ≤ �� · ������ ���
� �

| �P���� ��| ≤ ���� · ����� ��� 	 ≤ � ≤ �� �����

If �, 	 ≤ � ≤ �� − ����, is fixed, then from definition (5.1)
it follows


��
�→∞


�
� ����� ���− �����
�

� � 
�
��� − �� � ������

Therefore, applying (5.2), we have

�
���� � 
��

�→∞

�
� |P���� ���− �����|

�
≤

≤ �− �� �� 
�
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d that 	 � � ≤ ��−����. Hence, if 	 � 
 � ��−����,
m (5.3)-(5.4) it follows

���
�≤	≤


{�− �
����} ≥

� � 
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�
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� �
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ities (5.5)-(5.6) and Lemma 3.1 yield the statement of
1.

rem 1 is proved.
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